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We propose a method for calculating the gasdynamic and electric parameters of two-dimensijonal conducting-gas
flow in a coaxial MGD generator with continuous electrodes with account for the effect of transverse nonhomogeneity of
the magnetic field, variable plasma conductivity, and dependence of the Hall parameter on the magnitude of the
magnetic field and the pressure. Some computational results are presented.

A characteristic feature of the coaxial MGD generator (Fig. 1) is the essential nonhomogeneity of the magnetic
field across the channel section; therefore, the problem of determining the gasdynamic and electric parameters of the
flow in the channel generator must be solved in the two-dimensional formulation.

In fact, the axial flow passing through the magnetic field B¢ in the presence of the Hall effect acquires a radial
displacement, since the Lorentz force in this case has two components. A similar pattern is observed in a
nonhomogeneous magnetic field even without account for the Hall effect [1, 2].

Fig. 1

In [3—5] the calculation of the coaxial channel is carried out in the quasi-one-dimensional approximation; in [5]
the plasma electric parameters are averaged across the section with account for nonuniformity of the magnetic field;
no estimate is given for the error of one~-dimensional theory. The electric fields and currents in a coaxial Hall
generator channel are studied in [6], but the problem is solved under the assumption that the plasma electric
conductivity and all the gasdynamic parameters in the channel are constant. A method is deseribed in [7] for
calculating unsteady two-dimensional plasma flow in a coaxial channel and computational results are presented;
however, the plasma is assumed isothermal, which is not the case in the coaxial channel of constant section.

We examine two-dimensional plasma flow in a coaxial MGD generator channel under the following assumptions:

1) the plasma is an ideal inviscid and non-heat-conducting gas,

2) the magnetic Reynolds number is small (Ry, < 1), which permits neglecting the induced magnetic field,

3) the electrode-plasma contact resistance and the resistance of the electrodes can be neglected in comparison
with the resistance of the plasma,

4) the entrance flow is considered uniform across the channel section,

5) end effects are not taken into account,

6) as a result of generator axial symmetry the flow parameters are independent of the angular coordinate.

Under these assumptions MGD flow of the type

V(v,0,2,),B(0, B, 0,E(E,0E)i(,0i)B,=1/r (1)

is described by the foilowing system of differential equations in dimensionless form:
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Of the Maxwell equations we use only the current continuity equation, since Ry, << 1. The following
characteristic dimensions are used in (2): r; is the inner radius of the coaxial channel; v,g, 0,, and o are the flow

parameters at the channel entrance; By = By for r = ry. The pressure is referred to pgvg?.

The values of the current density components j,. and j, are obtained from the generalized Ohm's Law in the form
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where the electric field intensity components Ep and E, are referred to v,By. The boundary conditions for the
gasdynamic functions have the form

v,=1, =0, p=1, p=poforz=0, v, =0mpur=1, v, =0 forr=r,. (4)

Moreover, the condition that vy be bounded as z — * must be satisfied.

The boundary conditions for the electric field intensity are formulated from the conditions that the difference of
the electrode potentials be constant and the assumption of no end effects.

The problem is solved with account for the temperature and pressure dependence of the electric conductivity,
which is defined by the expression

5= ATVse™NT pe, {5)

Here A is the seed ionization potential, A is a given constant [8].

The pressure and magnetic field dependence of the Hall parameter is accounted for using the approximate
formula

B =NBp, (6)
where N is a constant characterizing the working medium.

The system of equations (2) with the boundary conditions (4) is solved by the small-parameter method {9].
Assuming that the magnetic interaction parameter S is small, we seek the unknown functions in the form of series
expansions

X = Xo0+ SX;+ 82X, + ... (X =V, p, p, 0, E, B\ (7)

Substituting (7) into (2) and equating coefficients of like powers of S, we obtain the equations for finding the
functions Xj.

As the zero approximation we use the solution of (2) for S =0, which has the form
Voo = 45 Vrao = 0, poo = 1, Pog = Pos Goo = 1, Boo = Bo- (8)

and as a result of account for the Hall effect in the nonuniform magnetic field the functions Ep¢ and E;; are found from
the equation

a r r g a 4 (9)
or T+ 8o (Bro +ByE 0+ TFBe? 87 Ero—BEr) =% 1 F B

Equation (9) was obtained from the current continuity equation for the zero approximation. The boundary
conditions for this equation will be presented later.
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Considering only terms in (7) containing the first power of S, we obtain the system of equations
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and the equation
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The system (10), (11) separates into two independent parts: Egs. (10) define the functions vy, vz, Py, and py, and
include only the zero approximation Eyy, Ezq, and 8y; Eq. (11) permits finding Epy and Ezi with account for the
obtained gasdynamic functions and coefficients oy and 3. The latter are found using the following formulas, obtained by
substituting (7) into (5) and (6):

AN 3 Bop1 B, '
61=‘;,;(T—;,;‘2‘>~Tpl, =" R=N—_" (12)

where N and A are given constants.

Transforming (10) as indicated in [9], we obtain the equation for finding the function vy,
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The boundary conditions for (10) are
0= 0,01 =0,0,=0,py = 0fOrz= 0,5, =0forr=1,p, =0forr=r,. (14)

We use the Grinberg method [10] to find the solution of (13) with the corresponding boundary conditions
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Here J; and Y; are Bessel functions of the first and second kind and i, is the k-th root of the transcendental
equation

Jo (M) Yy (par) — T ()Y (R} = 0 (16)

The functions v,,, p;, and pg are found from (10). Thus, considering only the first powers of S in (7), we find the
gasdynamic functions from the formulas

v, =589,
”z=1'_01(1—-Mo (S( ) %€ — Cl(np0_1)§[f3%—i)-f2]d€,
E
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We reduce (11) to the following form to determine the functions E,; and Eg;:

o r | rCy 0 rgs
W[E(Erm‘-ﬁogzl)]-l' 7,1—17;: By =8By = - (18)

Thus, (9) and (8) are obtained for finding the functions Epq, Egz and Ep, Eg; the left-hand sides of these
equations have the same form, and therefore hereafter we use the indices i = 0; 1.

Introducing the electric potential ¢ by the formula
E = —grad ¢,
and expanding ¢ into a series of the form (7), we obtain the expression

09, 7l
Eri:_%prl, B, =—C a(g’ (19)

Substituting (19) into (9) and (18), we reduce them to the form

1 @ 0%; g 931 Cig1 8 (rBo) 03 93 a(P,‘
TaT( >+Clzazz—”* ot o >ag q or (20)

]
30 = "7, gm == g3+
Equations (20) can be solved by successive approximations.

Ag the zero approximation q)i(o) we use the solution of (20) for 8y = 0. In this particular case we obtain,
respectively, the Laplace and Poisson equations for finding the functions (po(o) and ¢,(0)

g,
ApY =0, g = 2. (21)

3]

We obtain the first approximation ¢;{)by solving (20) with (pi(o) substituted into the right-hand side, and so on.
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We obtain the boundary conditions for the potential ¢ in the channel with continuous electrodes from the condition
that the electrode potential difference be constant. We set

o=0for r=1, o= Ufor r=r;

then, expanding ¢ into a series of the form (7), we obtain
tpa=0,-1p1=0f0rr=1,cp0=U,¢1=Of0rr;r2. (22)
Moreover, at the channel entrance we have the condition jgz =0 for £ =0, since we neglect end effects. Hence,
substituting (7) into (3) we obtain

d 8
b =2 forg—o, (23)

op o 9 1
Bo-g;l—-—cl—a%—z 1(7;'%—7) for g=o0.

The resulting formulas were used on an M-20 digital computer to calculate the first approximations of the
gasdynamic and electric parameters

X =Xop+ S$X; (X=V,p,p,E, 0,8 ). (24)
The most characteristic relations are shown in Figs. 2-7.

All the quantities in the figures are shown in dimensionless form, and S = 0.58 and U = 0. 15,
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Equations (9) and (11), which after transformations take the form (20), were integrated by successive
approximations to determine the functions E,q, Eyj and Ez;, Eyy. In each approximation the problem was solved by the
grid method. Up to 20 successive approximations were made to achieve the specified precision (0.5%).
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We see from Fig. 2, which shows the radial velocity component v, versus r for various values of the Hall

number (8 =kk; B/p, k = 0.5, 1), that for the coaxial channel of constant section the velocity component v, is two
orders of magnitude less than the axial velocity component v,. However, the radial variation of the velocity v, is
rather large and comparable with its increase along the channel (Figs. 4 and 7) even without account for the Hall effect,
i,e., a flow which is uniform at the channel entrance becomes essentially two~dimensional in the presence of a
magnetic field which is not uniform across the channel section.

.00

The dependence of the Hall number on the radius at different channel sections for k = 0.5 is shown in Fig. 3.
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The radial velocity component arises both as a result of the existence of magnetic field nonuniformity and as a
result of the presence of Hall currents. With increase of B the velocity v, first increases and then decreases (see Fig.
2).
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Figure 4 shows curves of the dimensionless axial velocity component v, versus the longitudinal coordinate § for
values of k =0, 0.5, 1. We see from comparison of curves 1, 2, and 3 that with increase of the parameter k (and this
means increase of the Hall number), the relative variation of v, along the channel length decreases. This is explained
by the reduction of the flow-retarding electrodynamic force, associated basically with the reduction of the effective
electric conductivity.
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The reduction of v4 in comparison with the unperturbed velocity at the channel inlet (curve 3 in Fig. 7) is explained
by the strong change of the current ratio jr/jz ~ . In fact, since we are considering a channel with continuous
electrodes and end effects are not taken into account, the longitudinal currents j, (we call them Hall currents) must be
closed on the electrodes. Thus, the radial component jr is the sum of the Faraday current and part of the Hall current.
The Hall current which is closed by the continuous electrodes at the channel inlet closer to the outer radius exceeds
the Faraday current, and this segment of the channel changes to the accelerator (pump) regime. This conclusion is

also confirmed by analysis of the dependence of pressure, density, and temperature on channel length which is not
presented in this article,

Analyzing the radial dependence of the current density components j, and j, (Figs. 5 and 8) and of the axial
velocity v, (Fig. 7), we can draw the following conclusions.

1. At the channel inlet near the inner electrode (for r = 1) the closed part of the Hall currents is directed
opposite to the Faraday current, while at the end of the channel their directions coincide, therefore in segment 1-5
(along the Or-axis) curve § corresponding to the section £ = £, lies above curves 1 and 2 (¢ = £, and ¢ = &g,
respectively). Near the inner electrode we observe the reverse direction of the closed part of the Hall currents,
therefore in segment 5-13 curve 3 lies below curves 1 and 2 (Fig. 5).
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2. Since the longitudinal current arises basically as a result of interaction of the resultant radial current with
the magnetic field, the nature of the radial variation of j, should coincide with the nature of the variation of j,, and
this is shown by comparison of Figs. 5 and 6.
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3. We see from Fig. 7 that when the corresponding Hall number is reached near the inner electrode (in segment
1-2) there arises a regime of very strong increase of the longitudinal velocity component, which apparently
corresponds to the "oscillation" regime at the anode [7].
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